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Abstract. Links between data elements described by RDF models stand to the
core of the Linked Open Data (LOD). Usually, semi-automatic algorithms are
used to build connections among RDF datasets. However, RDF assertions are
subject to change, which can affect existing links. Interconnected open data de-
mands (semi-)automatic methods and tools to maintain their consistency over
time. In this context, an example of inconsistency is the presence of semanti-
cally broken links. Their detection remains a very hard task to perform, given
the difficulties to interpret the meaning of resources involved in the link. In this
paper, we investigate a technique for the detection of semantically broken links
between resources in distinct RDF datasets via the use of similarity values and
triple changes computed. This study paves the way for the development of (semi-
)automatic mechanisms for link maintenance in LOD.
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1 Introduction

Linked Open Data (LOD) has grown as a movement for structuring and sharing data on
the Web. One of the key principles refers to the interconnection between the resources
of different datasets in LOD. The acceptance and usage of such good practice by the
datasets contribute to the growth and consequently to the success of a new Web of Data,
with consistent and robust interlinked datasets representing knowledge of diversified
domains.

The interconnection of Resource Description Framework (RDF) statements via ex-
plicit links plays a central role to assure data linkage, semantic interoperability, and
knowledge discovery. RDF triples - including links - must be updated, added, or re-
moved to keep the repositories up-to-date. The update of linked data is necessary due
to the evolutionary characteristic of these structured datasets, following the evolution
of the knowledge they represent. However, data changing operations might influence
well-formed links, which turns the maintenance of their consistencies over time a hard
task. Given their evolutionary characteristics, the datasets face a big and well-known
challenge: the integrity of links.

An open problem associated with this challenge is the presence of broken links. One
type of inconsistency found in the literature is the semantically broken link. It is found



at instances of links between two different datasets that evolved in a given period of
time. The literature has addressed cases of structurally broken links because detecting
that a part of the link was removed is easier than detecting changes in the meaning
of the resources. Nevertheless, cases where there is a change in a resource of the link
(subject or object) needs to be further investigated. Literature has addressed techniques
to track changes in RDF repositories. However, the task of maintaining the links up-to-
date requires deeper studies. Few investigations approached the link integrity problem
aiming to monitor and preserve data quality [7].

A misspelling in the resource of a link can be easily checked by traditional algo-
rithms of ontology management. However, a change in the semantics of a resource is
not that simple for automatic semantic inconsistency detection. To illustrate the difficul-
ties in this task, suppose there is a link connecting two resources labeled as “São Paulo”
in two different datasets. If there is a change in the subject of the link from “São Paulo”
to “City of São Paulo”, we have to guarantee that the link connecting this resource to
the object remains consistent in the second dataset, and its semantics is preserved. If the
linked resource is connected by the predicate “sameAs”, or any other equality predicate,
and the object of the connection possesses the same meaning of “City of São Paulo”,
then the link is not corrupted. However, the object of the connection can be, for exam-
ple, “Greater São Paulo”, which is different from “City São Paulo”. This is an example
of a semantically broken link.

In this article, we propose a novel methodology to detect semantically broken links
in RDF datasets. The algorithm uses as input two versions of the same dataset at differ-
ent periods of time. On this basis, our solution detects instances of semantically broken
links. The methodology explores the results of syntactic and semantic similarity mea-
sures that calculate the degree of proximity between the resources that changed from
one dataset release to another.

The remaining of this paper is organized as follows: Section 2 discusses related
work; Section 3 presents our proposed methodology; Section 4 reports on the conducted
experimental evaluation; Sections 5 discusses the obtained findings whereas Section 6
shows the final remarks of this paper.

2 Related Work

One of the first efforts in the topic of broken links came from DSNotify [2], a tool that
is able to recognize structurally broken links and fix them, supervised by a specialist.
DSNotify sends notifications to the maintainer of the datasets warning that something
changed in the dataset. DSNotify served as an inspiration to the subsequent alternatives
found in literature, like Delta-LD [12], which is able to fix broken links removing the in-
consistent resource, and reconnecting the link using SPARQL templates. However, both
alternatives only deal with structurally broken links. The framework Silk [13] was de-
veloped to maintain links between ontologies. It generates new links between datasets,
evaluates them, and track possible new links that can be used in both datasets. However,
it does not check the consistency of existing links.

It is relevant to differentiate structurally and semantically broken links. A link is
structurally broken, as stated by Singh, Brennan and O'Sullivan, “if either source or



target is no longer dereferenceable” [12]; and also by Popitsch and Haslhofer [6] ”if
its target resource had representations that are not retrievable anymore”. A link is se-
mantically broken when the semantic of data in the target dataset is not the same as the
semantic of the source [3]. Semantically broken links are harder to detect and fix than
structurally [6].

Pruski et al. [8] investigated the semantic evolution aspect of mappings, which are
the links in the conceptual level (ontologies). They explored background knowledge on
their approach. This work differs from ours because it does not deal with LOD datasets
at the instance level.

In our recent studies, we investigated if there is a correlation between changes in
triples and changes in links [11]. Changes in triples associated with the link can be a clue
to identify cases of broken links. Regino et al. [10] studied a thorough literature survey
concerning aspects of link maintenance in the LOD context. The authors organized
existing approaches into two groups: preservation solutions, related to the identification
and notification of broken links; and maintenance solutions, related to the edition and
fixing of the broken links. The study found that most solutions fall into the preservation
solutions instead of maintenance, which still requires research efforts to fully address
the problem.

Although literature presents contributions to the management and analysis of links
in RDF datasets, to the best of our knowledge, it still lacks solutions including algo-
rithm, framework, and experimental studies - aiming to fully and automatically address
the problem of semantic broken link in LOD context.

3 Identification of Semantically Broken Links

A RDF triple refers to a data entity composed of subject, predicate, and object defined as
t = (s, p, o). A dataset in LOD is a conglomeration of a finite number of RDF triples in
a domain. Formally, R = {t1, t2, t3, ..., tn}. Besides the use of triples inside a dataset,
the linkage among several datasets interconnect the datasets. To this end, it is necessary
that a predicate establishes a relation between a subject of the first dataset (source)
and an object of the second (target). Formally, we define a link as l =< ra, p, rb >
connecting a pair of resources ra and rb, in which ra ∈ RS and rb ∈ RT , such that RS

differs from RT . For the definition of p, we consider predicates owl : SameAs. We
define a set of links between RS and RT as follows: L = {l0, l1, l2, ..., ln}. A complete
dataset refers to the union of internal triples and links, such as D = R∪ L.

The evolution of RDF datasets in terms of changes affecting their triples may inval-
idate previously determined links. This hampers data linkage consistency over time. In
order to maintain the consistency of RDF datasets, its links should remain in an integrity
state, even with underlying changes in data.

At this stage, we introduce the notion of time j ∈ N . For a RDF dataset, we denote
DSj

the initial version of the dataset and DSj+1

its evolved version. Consider a link lj at
time j and a link lj+1 based on distinct releases of the associated datasets. Modifications
occurring in a resource of the link (ra) from a release of the dataset in a specific time j
to a time j + 1 can invalidate such link lj(ra → rb). For example, ra can exist at time



j (ra ∈ DSj

), but be removed at time j + 1 (ra /∈ DSj+1

). In this sense, the link can be
considered structurally broken or semantically invalid.

We investigate the evolution of the subject of a link (note that we are assuming
the object resource in the link keeps stable). Given a link lj(ra → rb) at time j this link
evolved, changing its subject in dataset DS from ra to rc. This results in lj+1(rc → rb).
In our context, the change in the subject updated its meaning, which results in rc being
semantically different from ra. The link established at time j+1 between rc ∈ DS and
rb ∈ DT can became semantically broken. The update of the link lj(ra → rb) may not
negatively affect the established link because it can be an update to fix the given link
(e.g., a re-connection to a better resource). We address the challenge that given a link,
our solution detects whether it is semantically broken based on an analysis of similarity
values among involved resources.

Figure 1 presents an real example of links (affected by changes overtime). DSj

represents DBpedia before evolution, DSj+1 stands for DBpedia after evolution and
DT j

Wikidata. We only consider evolution from one of the datasets (DS). Figure 2
presents our methodology to detect the inconsistencies in links.

Fig. 1. Example of a Changed Link Connecting DBpedia and Wikidata

Steps 1-2: Reading the Datasets and Link Identification. The required input
refers to the same dataset in two distinct versions DSj

and DSj+1

. Both versions are
composed of RDF triples and links connecting to an external dataset DT . The second
step is the separation of links from other triples. First, we discover which predicates in
the dataset represent the connection between subject and objects with different datasets.
This is performed by examining the host of both subject and object. If they are different,
then the subject and object belong to different datasets, which classifies this triple as a
link. Each triple that contains this predicate is then considered a link. Afterward, the
solution retrieves all triples that have the predicates categorized as links. At the end of
this step, we have two lists of links: Lj (regarding DSj

) and Lj+1 (DSj+1

).



Fig. 2. Methodology to Discover Semantically Broken Links

Step 3: Changes Discovery. In the third step, our solution compares each link from
Lj with Lj+1, recovering all links that had its subject changed, but maintained its pred-
icate and object. Note that a link also could change its predicate, but this case is not
addressed in this study (a subject for future work).

Figure 1 shows two links as an example of an evolved subject of a link. The triples
are composed of a subject from DBpedia, a predicate “sameAs”, and an object from
Wikidata. The first triple (upper side) represents the triple before evolution (time j)
with the subject “alcoholic beverage”. The second line (lower side) represents the triple
after evolution (time j + 1) with the subject “alcoholic drink”. It is valid to note that
among these changes, there are cases of consistent and inconsistent changes. To deter-
mine if these changes break the link, we perform similarity analyses among the affected
resources.

Step 4: Similarity Computation. At this step, the solution applies a similarity com-
putation to measure the degree of relatedness between the resources. The input is com-
posed of two URIs. The URI is mainly composed of 2 pieces: the host and the path.
The host represents the dataset and the path may represent the resource. The path in
some datasets is composed of a sequential identification number. In order to calculate
the similarity between the resources, there is a need to retrieve a label associated with
this sequential number, otherwise we would compare sequential numbers and labels,
which is undesirable. To perform it, the algorithm retrieves the object correspondent to
the property rdfs:label. The output of this step is a normalized value ranging from 0 to
1, which values closer to 1 represents more similar results.

Step 5: Resources Comparison. As presented in Figure 3, our solution computes
three evolution mensurations concerning similarity.

– Before evolution computation: Compute similarity value between ra and rb at
time j. This evaluates what was the similarity between subject and object of the



link before the evolution. In the example in Figure 1, we calculate the similarities
between subject “alcoholic beverage” from DBpedia and object “alcoholic bever-
age” from Wikidata at time j;

– After evolution computation: Compute similarity value between rc and rb at time
j+1. This evaluates what is the similarity between subject and object of the link af-
ter the evolution. In the example in Figure 1, we calculate the similarities between
“alcoholic drink” from DBpedia and object “alcoholic beverage” from Wikidata at
time j + 1;

– Subject evolution computation: Compute the similarity value between ra at re-
lease j and rc at time j + 1. In the example in Figure 1, we calculate the similar-
ity between subjects “alcoholic beverage” from DBpedia at time j and “alcoholic
drink” from DBpedia at time j + 1.

Fig. 3. Mensurations applied in our algorithm

Step 6: Broken Links Recognition. For each set of comparisons between the re-
sources (measures concerning before evolution, after evolution, and subject evolution
measures), our solution identifies semantically broken links. Our key assumption relies
on the fact that the link is semantically broken if the value of syntactic and semantic
similarity before the evolution is higher than after the evolution measure. We under-
stand that in a semantically broken link, the similarity among the involved resources
decreased in comparison with the original link at time j. In this sense, the rational to
assign a semantically broken link considers that if the “before evolution computation”
(similarity value) outperforms both “after evolution computation” and “subject evolu-
tion computation”, our solution raises a flag of a possible case of a semantically broken
link.

Algorithm 1 defines our procedure to discover inconsistent links. After obtaining
the links and their changes (lines 3 - 6), the algorithm computes the similarity values.
To this end, the algorithm selects the subject in its versions j and j+1 and the object of
the links (lines 7 - 9). The three defined measures are then calculated (lines 11 - 13) in
order to identify and store the broken links (lines 14 - 15). Our work fully implemented
our methodology and algorithm3.

3 https://gitlab.ic.unicamp.br/jreis/evoLOD-analysis



Algorithm 1 Discovery of Broken Links

Require: DSj

,DSj+1

1: Lj ← ∅;
2: Lj+1 ← ∅;
3: Lj ← getLinks(DSj

);
4: brokenLinks← ∅;
5: Lj+1 ← getLinks(DSj+1

);
6: ∆← detectChangedLinks(Lj ,Lj+1);
7: for all l ∈ ∆ do
8: rja ← getOldSubject(l);
9: rjb ← getOldObject(l);

10: rj+1
c ← getNewSubject(l);

11: SimBefEvol← calculateSimilarityBeforeEvolution(rja, r
j
b);

12: SimAfterEvol← calculateSimilarityAfterEvolution(rj+1
c , rj+1

b );
13: SimBetweenSubj ← calculateSimilarityOfSubjects(rja, r

j+1
c );

14: if SimAfterEvol ≥ SimBefEvol ∧ SimBetweenSubj ≥ SimBefEvol then
brokenLinks← l;

15: end if
16: end for
17: return brokenLinks

4 Experimental Evaluation

The goal of this evaluation is to assess our solution for semantically broken link detec-
tion based on real-world datasets. In our experiments, we considered DBpedia4, given
its openness characteristic, as long as its constantly updated over time combined with
the presence of numerous links connecting to other datasets in LOD. We also chose
Wikidata5 and GeoNames6 datasets as the income of the links. The characteristic of
evolution is important for this evaluation because these datasets are subject to new re-
leases periodically. Our solution is tailored to verify the consistency of the links when
a new version of the dataset is released.

We used as input two versions of DBpedia, from October 2015 and October 2016.
DBpedia itself has approximately 10 billion triples in total (considering all chapters). In
order to speed up the process of reading the datasets, we recovered only links from DB-
pedia to Wikidata and those from DBpedia to GeoNames that were modified between
the versions to reduce the input. We acquired 174 modified links (87 before evolution
Lj and 87 after evolution Lj+1) from DBpedia to Wikidata; and 7950 modified links
(3975 before evolution Lj and 3975 after evolution Lj+1) from DBpedia do GeoNames.

The only predicate used to link resources from the datasets is the ”same as”7. Before
calculating the similarity values, a request for each object of the link (target dataset) was
performed to retrieve the label associated with the resource.

4 http://dbpedia.org
5 http://wikidata.org
6 http://geonames.org
7 http://www.w3.org/2002/07/owl#sameAs



On the selected part of the dataset, we applied our Algorithm 1. This retrieved the la-
bel and calculated the similarities addressing each link. The solution in our experimental
study calculated the similarity value considering three distinct similarity techniques.

Syntactic similarity stands for the calculation on how equal are two given character
strings in terms of lexical analysis. A semantic similarity computes if two input terms
share the same meaning even though they differ in a lexical way. A popular method to
calculate the semantic similarity between terms is to find the minimum length of path
connecting them based on background knowledge, if the under analysis terms are rep-
resented in a hierarchy of concepts [9]. The syntactic similarity was calculated using
the Levenshtein Distance [4]. The semantic similarity was calculated using the back-
ground knowledge database known as WordNet, a free lexical database organized as a
hierarchy of concepts. The similarity value was calculated based on how many nodes
are between two terms. The third similarity technique was the Nasari [1], which uses as
background knowledge the BabelNet semantic network [5].

Following the example in Figure 1, the Levenshtein algorithm resulted in a bro-
ken link detection case, once that the first similarity value (between the older subject
and object) returned a higher value than the second value (between the newer subject
and object). The algorithm which uses WordNet as background knowledge resulted
in no semantic change because all three measures returned the same value of seman-
tic similarity. The same occurred to the algorithm that uses BabelNet as background
knowledge.

We applied our algorithm several times (one time considering each similarity func-
tion investigated). Table 1 presents the number of broken links detected in each dataset
when using each different similarity function in our algorithm.

Each pair of 87 links from Wikidata generated 3 results (one for each similarity
function). The total number of broken links cases found was 38 (cf. Table 1)(14.55%
of the total number of changed links in Wikidata). Applying our algorithm with Lev-
enshtein similarity, we found 33 out of the 38 (86.84%). With the use of WordNet and
BabelNet, our algorithm identified 4 and 1 case of broken links, respectively.

An example of a broken link identified by Levenshtein in Wikidata’s dataset states
that it became broken after the resource “vacation property” (DBpedia) linked to “va-
cation property” (Wikidata) change to “holiday cottage” (DBpedia) linked to “vacation
property” (Wikidata). However, the change is valid, since both resources are synonyms,
implying that the detected broken link by Levenshtein is a false positive. WordNet and
BabelNet identified it correctly as a not broken link case.

Each pair of 3975 links from GeoNames generated 3 results (one for each simi-
larity). The total number of broken links cases found were 1551 (cf. Table 1)(13% of
the total number of changed links in Geonames). Applying our algorithm with Leven-
shtein similarity, we found 1502 out of 1551 (96.84%). WordNet and BabelNet datasets
identified 29 and 20 cases of a broken link, respectively.

An example of a broken link identified by Levenshtein in Geonames’s dataset states
that it became broken after the resource “niagara falls” (DBpedia) linked to “niagara
falls” (GeoNames) changed to “niagara river” (DBpedia) linked to “niagara falls” (GeoN-
ames). This example of a broken link was detected by our algorithm via the use of
WordNet and BabelNet as background knowledge. This is a true positive case, since



Wikidata Geonames
Levenshtein 33 1502
Wordnet 4 29
Babelnet 1 20
Total 38 1551

Table 1. Identified broken links in the evolution of the studied datasets with our algorithm with
the use of distinct similarity measures

“niagara falls” is a component of “niagara river”, not a synonym. The change then turns
it broken, correctly identified by all 3 applications of our algorithm.

5 Discussion

Handling the impacts of RDF datasets evolution in established links is essential to main-
tain the consistency and benefits of LOD over time. This is especially valuable because
of the heavy interconnection presented in LOD. We proposed an algorithm that dis-
covers cases of semantically broken links. We conceived and developed a methodology
that distinguishes the prejudicial and non-prejudicial changes to the links, regarding the
changes in the subject of links.

We found semantically broken links in the studied dataset via our solution. There
is still room for improvement in the process of updating the resources and links of the
dataset. The majority of broken links were detected with the use of the Levenshtein
similarity associated with our algorithm. However, we found that Levenshtein is not
suitable, since it returns a high number of false positives. On the other hand, the re-
sults based on the use of WordNet and BabelNet represent a small number of the total.
This might have been caused by the use of background knowledge based on a generic
domain. The use of background knowledge from specific domains that match the one
used in the datasets or a specialized dictionary would be more suitable to improve the
effectiveness.

For future work, we aim to aggregate new measures of similarities. One idea is to
explore the neighborhood of the resources and compare them. We can also look at the
ontology level, not only at the instances, thus investigating the graph structure.

6 Conclusion

Links are the most valuable assets in LOD. It is necessary to have adequate methods
to keep them up-to-date over time. New releases of RDF datasets may lead to incon-
sistent links. This paper proposed a novel technique to discover cases of semantically
broken links using syntactic and semantic similarity measures. This study was the first
step to gather techniques to develop a framework responsible for the (semi-)automatic
maintenance of links in LOD. Our future work involves the full implementation of this
framework.
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